
 1

1 What is the Stanford Parser?

The Stanford Parser is a statistical natural language parser from the Stanford Natural
Language Processing Group. Used to parse input data written in several languages
such as English, German, Arabic and Chinese it has been developed and maintained
since 2002, mainly by Dan Klein and Christopher Manning. The application is
licensed under the GNU GPL, but commercial licensing is also available.

2 Installation and Requirements

The parser runs under Windows and Unix/Linux/MacOSX and requires a Java
Runtime Environment (JRE) (Java 1.5 or higher). You can download 1 the
recommended version 1.6.5 from the website of the Stanford NLP Group.
In a next step, extract the Stanford Parser into a directory of your choice (using
Windows, you need to extract it twice). The package contains also a basic graphical
user interface (GUI) for visualization of structure trees.

3 Running the Parser

3.1 Parser Models

Parsers for different languages such as Chinese, Arabic, English and German are
provided. In most cases, the probabilistic context-free grammar (PCFG) parser will be
sufficient, since it processes fast, shows good accuracy values and moderate
memory usage. A PCDG model is not provided for parsing German texts. The parser
model called FACTORED is more complex and requires more memory because it
contains two grammars and leads the system to run three parsers. Furthermore,
there are two parser files wsjPCFG.ser.gz and wsjFACTORED.ser.gz, which refer to
a parser trained on the Wall Street Journal section of the Penn Treebank project.

1 For compatibility with Stanford NER (version 1.1.1) download Stanford Parser version 1.6.1.

Stanford Parser

How-to by Artur Schmidt modified by Franziska Horn

http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://linglit194.linglit.tu-darmstadt.de/linguisticsweb/bin/view/LinguisticsWeb/StanfordNER

 2

3.2 Using the GUI

Using the GUI is recommended when you use the Stanford parser for the first time.
In order to start the application just launch the file lexparser-gui.bat (on Windows
systems). Single sentences which can be entered or received by opening a text file
can be tagged after selecting a parser file. Furthermore, a visualization of the
structure tree can be seen in Figure 1.

Figure 1 Using the GUI for tagging

There is no possibility to save tagged sentences or tag a whole document at once.
Compared with command-line, there are no further output or input options provided.

3.3 Using the command-line

Using the application by command line is recommended because more fine grained
control over the parsing process is provided. To apply the Stanford Parser, go into
the directory where you have extracted the parser and type the following commands
on a command line (no line breaks!):

 3

java -mx150m -cp stanford-parser.jar
edu.stanford.nlp.parser.lexparser.LexicalizedParser OPTIONS
parserFile input1 input2 ...

ParserFile is the parser model (grammars, lexicon, etc.). For English, for instance,
englishPCFG.ser.gz and wsjPCFG.ser.gz are provided. input1 input2 ... is a list of
input files. Further OPTIONS include specifications for input and output format, which
are described in the following sections.

3.4 Input Options

The Stanford Parser provides a wide range of functionalities to parse “raw”, not
preprocessed (e.g. not tokenized) texts. In case you want to use other tools for
tokenization, sentence splitting, or tagging, you can add the following command(s) to
the OPTIONS parameter:

-maxLength length Limit sentence length to prevent the system running out of memory
(useful for unknown texts) by just replacing length by a number, e.g., 50

-tokenized Assumes the input is tokenized

-sentences delimitingToken Assumes that sentences are already split by delimiting Token
(e.g. newline to use line breaks)

-tagSeparator separator Assumes the input is already tagged with separator, separating
token and tag according to the standards in the Treebank (e.g. the/DT quick/JJ
brown/JJ fox/NN … saved in a *.parse file), input data which is only partially tagged
can also be used.

...-tokenized -sentences newline -tagSeparator / ...

3.5 Output Options

Add -outputFormat format to the OPTIONS placeholder to change the output format.
Possible options for format written in brackets are presented as follows, exemplified
on the tagging process: “The quick brown fox jumped over the lazy dog.”

penn Penn Treebank format
This output format is not usable for German because the German parser files are
trained on the Negra Corpus using other tags. Using “penn” as output format allows
further analysis and visualization of the generated syntactic structures by the tool
TreGex.

http://linglit194.linglit.tu-darmstadt.de/linguisticsweb/bin/view/LinguisticsWeb/StanfordTregex

 4

Example for output:

(ROOT
 (S
 (NP (DT The) (JJ quick) (JJ brown) (NN fox))
 (VP (VBD jumped)
 (PP (IN over)
 (NP (DT the) (JJ lazy) (NN dog))))
 (. .)))

oneline Penn Treebank format on a single line

Example for output:

(ROOT (S (NP (DT The) (JJ quick) (JJ brown) (NN fox)) (VP (VBD jumped) (PP (IN over) (NP (DT the)
(JJ lazy) (NN dog)))) (. .)))

wordsAndTags Use the parser as a POS tagger

Example for output:

The/DT quick/JJ brown/JJ fox/NN jumped/VBD over/IN the/DT lazy/JJ dog/NN ./.

typedDependenciesCollapsed Typed dependency format, i.e. grammatical relations
between words

Example for output:

det(fox-4, The-1)
amod(fox-4, quick-2)
amod(fox-4, brown-3)
nsubj(jumped-5, fox-4)
det(dog-9, the-7)
amod(dog-9, lazy-8)
prep_over(jumped-5, dog-9)

-printPCFGkBest n Obtaining multiple (n) parse trees for a single input sentence with
their log probabilities to compare. Only applicable using the PCFG parser.

Example for output using option -printPCFGkBest 2

Parse 1 with score -78.23169921338558
(ROOT
 (S

 5

 (NP (DT The) (JJ quick) (JJ brown) (NN fox))
 (VP (VBD jumped)
 (PP (IN over)
 (NP (DT the) (JJ lazy) (NN dog))))
 (. .)))

Parse 2 with score -79.60303545906208
(ROOT
 (S
 (NP (DT The) (JJ quick) (JJ brown) (NN fox))
 (VP (VBD jumped)
 (PRT (RP over))
 (NP (DT the) (JJ lazy) (NN dog)))
 (. .)))

latexTree LaTeX format to be used with Avery Andrews’ trees.sty package2.

You can also combine several options using a comma-separated list, e.g.

...-outputFormat "penn,typedDependenciesCollapsed" ...

The default output is displayed in the command line. To save the output to file, e.g.
output.txt, append the following to your command:

> output.txt

More command line options are available in the Javadoc of the LexicalizedParser
class, especially in the main method.

4 Summary

The Stanford Parser has a good accuracy but further training is possible, e.g. for
applying it on domain specific texts. Information on how to train a tagger can be
found online.

An online version of the parser is also presented for testing the application.
There is also a plug-in which allows using the parser within GATE which is described
here.
Besides its accuracy and various options concerning input as well as output data, its
compatibility with the tool TregEx is another advantage of the Stanford Parser.
TregEx allows visualization of structure trees generated by the Stanford Parser and

2 Further pieces of information are available online.

http://nlp.stanford.edu/software/parser-faq.shtml#d
http://nlp.stanford.edu:8080/parser/
http://linglit194.linglit.tu-darmstadt.de/linguisticsweb/bin/view/LinguisticsWeb/GATE
http://arts.anu.edu.au/linguistics/People/AveryAndrews/Software/latex/

 6

querying them for certain syntactic patterns. Thus, the applications can be used for
analyzing the tree data structures statistically.

5 References

Andrews, A. (2006). Tree typesetting package for LaTex. (last access 02.02.2011
23:38) retrieved from
http://arts.anu.edu.au/linguistics/People/AveryAndrews/Software/latex/

Manning, C. & Klein, D. (2008). The stanford parser. (last access 20.01.11 14:54)
retrieved from http://nlp.stanford.edu/software/lex-parser.shtml

